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 Abstracts 
Semantic tableau is a proof system used to prove the validity of a formula using Prolog, it can also   be used 

to prove if a formula is a logic consequence of a set of formulas. Semantic tableau is used in both propositional and 

predicate logic. Tableau is a disjunction normal form. VAMPIRE is a high-performance theorem prover for first-order 

logic with or without equality. In this paper, a modified version of semantic tableau is presented, experimental results 

proved the validity of modified tableau. Also, it is shown how Tableau proof system and VAMPIRE can be used in 

predicate logic. 

 

Keywords: Predicate Logic, Semantic Tableau, VAMPIRE.. 

Introduction  
Since the days of Turing theorem has been so 

important especially in the case of long proofs proving 

which if done manually could be very much liable to 

human errors, Therefore automatic proving has been a 

very important replica. An automatic theorem prover 

for first order logic(FOL) is a procedure or program 

that can be used to show that some goal formula is 

implied by some first order theory, usually represented 

by a finite set of formulas. A semantic tableau is a tree 

representing all the ways the conjunction of  the 

formulas at the root can be true. We expand the 

formulas based on the structure of the compound 

formulas. This expansion forms a tree. If all branches 

in the tableau lead to a contradiction, then there is no 

way the conjunction of the formulas at the root can be 

true. A path of the tree represents the conjunction of 

the formulas along the path[2]. 

 

VAMPIRE is a system for proving theorems in first 

order logic with equality. VAMPIRE developed in a 

resolution-based theorem prover. VAMPIRE is the 

first theorem prover that can be used for proving and 

generating program properties automatically. 

 

Semantic tableau  was invented by E.W. Beth and J. 

Hintikka (1965). 

The first version of VAMPIRE was implemented in 

1993, it was then rewritten several times. The 

implementation of the current version started in 2009. 

It is written in C++ and comprises about 152,000 

SLOC. It was mainly implemented by Andrei 

Voronkov and Krystof Hoder. Many of the more 

recent developments and ideas were contributed 

byLaura Kovacs. Finally, recent work on SAT solving 

and bound propagation is due to Ioan Dragan[3].  

 

Problem formulation  
First Order Predicate in Tableau 

A semantic tableau is a proof system used to:    

 1. Test a formula A for validity.   

 2. Test whether B is a logical consequence of  A1,..., 

Ak.    

 3. Test  A1,..., Ak for satisfiability.   

 

Definition 1:A path of a tableau is said to be closed if 

it contains a conjugate pair of formulas, i.e. if some 

formula A and ~ A appear in the same path. A path of 

a tableau is said to be open if it is not closed. A tableau 

is said to be closed if each of its paths is closed[8]. 

We will see how tableau can be used to prove the 

validity of formula: 

1. To test a formula A for validity, from a tableau 

starting with ~A. If the tableau closes off then A 

is logically valid.   

2. To test whether B is a logical consequence of 

A1,..., Ak, form a tableau starting with A1,..., Ak, 

~B,  If the tableau closes off then B is a logical 

consequence of A1,..., Ak. 

3. To test A1,..., Ak for satisfiability, form a tableau 

starting with A1,..., Ak, If  the tableau closes off 

then A1,..., Ak is not satisfiable. If the tableau 

does not  close off  then A1,..., Ak is satisfiable, 

http://www.ijesrt.com/
rania_cs11@yahoo.com
mailto:subodhamb@rediffmail.com


[Mahomoud, 3(9): September, 2014]   ISSN: 2277-9655 
                                                                                         Scientific Journal Impact Factor: 3.449 

         (ISRA), Impact Factor: 2.114 
  

http: // www.ijesrt.com                 (C)International Journal of Engineering Sciences & Research Technology 
[529] 

 

and from any open path we can read off an 

assignment  satisfying  A1,..., Ak.  

 

There are 7 rules used to construct the tableau 

in the propositional logic as shown  in the following 

figure 

 
Fig 1: Tableau Rules used in Propositional Logic 

Tableau proof is used also in predicate logic by 

adding rules to cope with the universal   and existential 

quantifiers i.e. (∨, ∃). 

 

There are additional 6 rules used in predicate logic 

are shown as: 

Rule 1:       (∀x) α(x) 

                    α(t),    

for any ground term or constant term t, where t is a 

term free from variables. 

Rule 2:     ~{(∀x) α(x) } 

                   ~α (c),   

for any new constant c not occurring in α. 

Rule 3: Consider A(x, t) to be any an atomic formula 

with x as a variable and t an any ground term. 

                   ~ (∀x ) A(x, t) 

                  ~A(f(t),t),    

 where f is some function of t. 

Rule 4:Consider A(x, t) to be any an atomic formula 

with x as a variable and t an any ground term. 

                (∃ x ) A(x, t)                                    

               A(g(t),t),     

where g is some function of t. 

Rule 5:   (∃x )α(x) 

               α(c),    for any new constant c. 

Rule 6:  ~{( ∃ x)α(x)} 

               ~α(t),    for any ground term t. 

The following example shows how tableau proof 

system is used in proving      

Tableau root  

~ [(∃x) (P(x) ∨ Q(x)) →((∃x) P(x) ∨ (∃x) Q(x))]                                                            

(1) 

(∃x) (P(x) ∨ Q(x))                                         (2)        

~ [(∃x) P(x) ∨ (∃x) Q(x)]                             (3)                        

~ (∃x)P(x)                                                     (4)                       

~ (∃x)Q(x)                                                    (5)                            

P(a) ∨  Q(a) , for some constant a                 (6)                                       

~P(t1)          , for any ground term t1           (7)                    

~Q(t2)         , for any ground term t2   

 

P(a)              Q(a) 

  closed{P(a), ~P(t1)}           closed{Q(a), ~Q(t2)}                   

   In this example all the branches are closed. 

Therefore, the original formula is valid, where {a, t1} 

and {a, t2} are identical by applying the unification 

algorithm 

 

Substitution and Unification 
  Suppose we have two terms t and u, each 

containing variables. How do we decide whether there 

are any substitutions that make t and u identical?. A 

substitution θ is called a unifier of a finite set S of 

literals if Sθ is a singleton set[9]. 

 

A unifier θ for S is called a most general unifier (mgu) 

for S if for every unifier α of S there exists a 

substitution σ such that α = θσ. We want to find a way 

to construct an mgu for any set of literals.  

If S is a set of literals, then the disagreement set 

of S is constructed in the following way. 

1. Find the longest common substring that 

starts at the left end of each literal of S. 

2. The disagreement set of S is the set of all 

the terms that occur in the literals of S that 

are immediately to the right of the longest 

common substring. 

 

Unification Algorithm (Robinson) 

  Input: A finite set of atoms. 

  Output: Either a most general unifier for S or 

a statement that S is not unifiable  

1. Set k = 0 and 𝜃0= ε, and go to Step 2. 

2. Calculate S𝜃k. If it's a singleton set, then 

stop (𝜃𝑘  is the mgu for S). 

Otherwise, let 𝐷𝑘 be the disagreement set of S, and go 

to Step 3. 

            3. If 𝐷𝑘 contains a variable υ and a 
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 term t, such that υ doesn't occur in t, then calculate the                        

composition 𝜃𝑘+1 = 𝜃𝑘{υ/t}, set k:= k+1, and 

go to Step 2. Otherwise, stop (S isn't unifiable). 

 

A Tableau Implementation 
In this section, we discuss an implementation of the 

free variable first order tableau. We apply all Tableau 

Expansion Rules before proving branch closure. 

Finally, all Tableau Substitution Rule applications will 

apply most general unifiers to close branches. 

Correspondence between formulas and their types is 

summarized in Table1. We use α for formulas of 

conjunctive type, β for formulas of disjunctive type, 𝛾 

for quantified formulas of universal, and δ for 

quantified formulas of existential type. In the case of 

𝛾 - and δ -formulas the variable x bound by the (top- 

most) quantifier is made explicit by writing 𝛾(x) and 

𝛾1(x) (resp δ(x) and δ1(x)); accordingly 𝛾1(t) denotes 

the result of replacing all occurrences of x in 𝛾1 by t. 

Associativity of∧ and∨ justifies conjunctive and 

disjunctive formulas with an indefinite number of 

arguments [4]. 
Table 1 Correspondence between formulas and their 

types. 

 

 

 

 

 

 

 

 

 

If δ  occurs on a branch, we add δ(𝑓(x1, … , x𝑛) 

to the branch end, where x must be a free variable that 

doesn't also occur bound in the tableau; f must be a 

new Skolem function symbol, and x1, … , x𝑛  all free  

variables occurring on the branch. We take a Skolem 

function symbol to be fun(n), where n is a number that 

is increased by 1 at each δ rule application. We 

introduce a predicate, funcount, whose purpose is to 

save the current   Skolem function number. Then each 

time the δ rule is applied, the function newfuncount is 

called upon to increase the funcount by 1. 

The Q-depth is a pre-set bound, representing quantifier 

depth. The 𝛾 rule is applied the maximum allowed 

number of times, as specified by the value of Q-depth. 

In this way a complete tableau expansion for a given 

Q-depth can be constructed in a finite number of steps, 

and we can then go on to the closure testing stage. 

Proofs are finite objects so if a sentence X is provable; 

it has a proof in which some finite number of 𝛾 rule 

applications has been made. Consequently, if X is 

valid, it will be provable at some Q-depth. Being 

invalid is equivalent to being unprovable at every Q-

depth, so that we will change the Q-depth; by 

increasing or decreasing it until get closure. 

 

We want to ensure that if there are several 𝛾 rules on a 

branch. We do not apply the Q-depth of 𝛾 rule 

applications on a single formula so that we treat each 

branch as a priority queue. When working with a 

branch, we work from the top-down. We apply the rule 

to the uppermost negation or α formula. If we have a 

formula that is not a 𝛾 formula, we remove it from the 

branch and add its components or an instance. On 

other hand, if we have a𝛾 formula in our problem, we 

remove it, add an appropriate instance to the branch 

top, and add 𝛾 to the branch end. We work as long as 

apply 𝛾 rule on all branches of problem. 

 

First Order Predicate in VAMPIRE 

VAMPIRE is an automatic theorem prover for first-

order logic. VAMPIRE implements symbol 

elimination, which allows to automatically discover 

first-order program properties, including quantified 

ones. VAMPIRE is the first theorem prover that can be 

used for proving and generating program properties 

automatically. VAMPIRE is fully compliant with the 

first-order part of the TPTP syntax[1]:a Prolog-like 

𝛾

𝛾(𝑥)
 

(for an unbounded 

variable x) 

δ

δ(𝑓(x1, … , x𝑛)
 

(for f new Skolem and 

x1, … , x𝑛 all the used 

free variables) 

α α1, ... ,αn 

φ1∧ ... ∧φn φ1 , ... , φn 

~ (φ1∨ ... ∨φ) ~φ1 , ... , ~φn    

~~φ Φ 

β β1 , … , βn 

φ1∨ ... ∨φn φ1 , ... , φn 

~ (φ1∧ ...  ∧φn   ) ~φ1 , ... , ~φn    

δ δ1 

~(∀x)(φ(x)) ~φ(x) 

(∃ x )(φ(x) φ(x) 

𝛾 𝛾1 

(∀x)(φ(x)) φ(x) 

~(∃ x )(φ(x)) ~φ(x) 
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syntax allowing one to specify input axioms and 

conjecture for theorem provers, used by nearly all first-

order theorem provers. It was the first ever first-order 

theorem prover to implement the TPTP if-then-else 

and let-in formula and term constructors useful for 

program analysis[3].  

In this section, we describe a simple way of 

using VAMPIRE for proving a formula. Writing the 

formula as a problem in the TPTP syntax and applying 

VAMPIRE on this problem. VAMPIRE is completely 

automatic. 
 

Table 2 Correspondence between the first-order logic and 

TPTP notations 

First-Order Logic TPTP 

⊥, ┬ 

 

$false, $true 

¬F ~ F 

F𝟏∧ ... ∧ F𝐧 F1&... &Fn 

 F𝟏∨ ... ∨F𝐧 F1 |... | Fn 

 F𝟏 → Fn 

 

 F𝟏=>F𝐧 

 F𝟏 ↔ F𝐧  F𝟏<=> F𝐧 

(∀ x𝟏)...(∀x𝐧)F ![ x𝟏,...,x𝐧]:F 

(∃ x𝟏)...(∃x𝐧)F ?[ x𝟏,...,x𝐧]:F 

 

Refutation in VAMPIRE 
VAMPIRE is applied to some axioms and 

conjecture of first order predicate to obtain a 

refutation. We can prove the refutation of a formula by 

adding the negation of the formula and checking if the 

resulting set of formulas is unsatisfiable. If it is, then 

the resulting formula is a logical consequence of the 

axioms. 

Definition 2: An inference rule is an n-arty relation on 

formulas, where n ≥ 0. The elements of such a relation 

are called inferences and usually written as 
A1, . . . , An

A
 

The formulae A1, . . . , An are called the premises, and 

the formula A the conclusion, of this inference. An 

inference system is a set of inference rules. An axiom 

of an inference system is any conclusion of an 

inference with 0 premises. 

Each formula (or inference) in the proof is obtained 

using one or more inference rules. They are shown in 

brackets, together with parent numbers. Some 

examples of inference rules in this proof are 

superposition, inequality splitting and skolemisation. 

There are several kinds of inference rules. Some 

inferences, marked as input, introduce input formulae. 

There are many inference rules related to 

preprocessing input formulae, for example ennf 

[equivalence negation normal form] transformation 

and cnf [conjunction normal form] transformation. 

The input formulas are finally converted to clauses, 

after which VAMPIRE tries to check the 

unsatisfiability of the resulting set of clauses using the 

resolution and superposition inference system. The 

superposition calculus rules are divided in to two parts 

generating and simplifying ones. 

Formulas and clauses having free variables are 

considered implicitly universally quantified. 

Normally, the conclusion of an inference is a logical 

consequence of its premises. Inference rules used by 

VAMPIRE guarantee soundness, which means that an 

inference cannot change a satisfiable set of formulas 

into an unsatisfiable one. 

At the end of any run to VAMPIRE, there are statistics 

about the proof, including the overall running time, 

used memory, and the termination reason (for 

example, refutation found). In addition, it contains 

information about the number of various kinds of 

clause and inferences. VAMPIRE is based on a 

complete inference system, if the problem is 

unsatisfiable, enough time and space are given to find 

a refutation. When VAMPIRE cannot find a 

refutation, there are many ways try to find solution, 

increasing time limit and so on. 

 

Preprocessing 

Given a problem, VAMPIRE works as follows: 

 Input the formula. 

 Determine proof-search options to be used for 

this formula. 

 Preprocess the formula.  

 Convert the formula into equivalence negation 

normal form (ennf). 

 Remove if-then-else and let-in connectives.  

 Apply pure predicate elimination. 

 Use a naming technique to replace some sub 

formulas by their names. 

 Skolemise the formula.  

 Transform the formula into its conjunctive 

normal form (cnf). 

 Function definition elimination (optional).  

 Apply inequality splitting (optional).  

 Remove tautologies.  

 Apply pure literal elimination (optional).   

 Remove clausal definitions (optional).  
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 Report the result, maybe including a 

refutation. 

Superposition Inference System 

The superposition inference system depends on 

a simplification ordering and selection function. It 

consists of the following rules [7]: 

Resolution.            
𝐴∨𝐶1¬𝐴′∨𝐶2

(𝐶1∨𝐶2)𝜃
 ,  

where θ is a most general unifier of the atomic formula  

A and A'. 

Factoring.            
  𝐴˅∨𝐴′˅∨𝐶

(𝐴˅∨𝐶)𝜃
 , 

where θ is a most general unifier of the atomic formula  

A and A'. 

Equality Resolution.
𝑠≠𝑡˅∨𝐶

𝐶𝜃
 ,    

where θ is a most general unifier ofs and t. 

Functionality of VAMPIRE 

Features of VAMPIRE related to its functionality, 

including the splitting rule, simplification orders, 

simplification rules, clause and literal selection, and 

reasoning with limited time. 

Saturation Algorithm in VAMPIRE 

To saturate a set of clauses S with respect to an 

inference system, we need a saturation algorithm. At 

every step of the saturation algorithm, we select an 

inference, apply this inference to S, and add the 

conclusion of the inferences to the set S. If the initial 

set is unsatisfiable, then we will prove the refutation 

of clauses[5].  

Clause selection in VAMPIRE is dependent on two 

factors: the age and the weight priorities of a clause, 

where the age is used as numbering of clauses. Each 

clause has a unique number in increasing order, older 

clauses have smaller numbers. Each clause has a 

weight equal to its size, which is the total number of 

symbols in it. The clauses are selected from the age 

and weight priority queues using an age-weight ratio, 

a pair of non negative integers (a, w). If the age-weight 

ratio is (a, w), then of each a + w clauses, a oldest and 

w lightest clauses are selected. The age-weight ratio is 

specified by the user using the command --

age_weight_ratio. 

Splitting 

VAMPIRE implements the splitting without 

backtracking; the splitting rule is specified as follows:                   
𝑆∪ {𝐶˅∨ 𝐷} 

𝑆∪ {𝐶˅∨ 𝑝,𝐷 ∨˅¬𝑝}
 

where S is a set of clauses, the clauses C and D have 

no common variables, and p is a new propositional 

symbol. This rule is used in splitting of the clause store 

into two new stores, as shown in the β-rule in semantic 

tableau[5]:  

 

 

Colored Proofs and Interpolation 

 

Colored proofs are used in a program when some 

(predicate and/or function)symbols are declared to 

have colors. In colored proofs every inference and 

every term or atomic formula can use symbols of at 

most one color. We call a symbol, term and clause 

colored if it uses a color, otherwise it is called 

transparent[6]. 

 

Let L and R be two closed formulae, have no free 

variables. A formula I is called an interpolant of 

formulae L and R if the following conditions are 

satisfied: 

(1) ⊢ L → I; 

(2) ⊢ I → R; 

(3) I uses symbols occurring in both L and R.  

 

where the existence of an interpolant implies that ⊢ L 

→ R; R is a logical consequence of L.  

 

Simulated output result 
The method of tableau works by starting with 

the initial set of formulae and then adding to the 

tableausimpler formulae until contradiction is shown 

in the simple form of opposite literals. Since the 

formula represented by a tableau is the disjunction of 

the formulae represented by its branches, contradiction 

is obtained when every branch contains a pair of 

opposite literals. 

 

Once a branch has contained a literal and its negation, 

its corresponding formula is unsatisfiable. As a result, 

this branch can be now "closed", as there is no need to 

further expand it. If all branches of a tableau are 

closed, the formula represented by the tableau is 

unsatisfiable; therefore, the original set is unsatisfiable 

as well. Obtaining a tableau where all branches are 

closed is a way for proving the unsatisfiability of the 

original set.  

 

In Tableau system, we prove the validity of a formula 

for a specific Q-depth. If a formula can't be first order 

at a specific Q-depth, we increase it to get refutation.  

The following example is compiled in SWI-

Prolog(w64pl-2013-11-06) 

 

Example: Check the validity of the formula(∃ x)(p(x) 

˄ q(x)) → (∃ x)p(x) ˄ (∃ x)q(x)  

If we check at Q-depth 1, we find that the formula not 

first order tableau at 1.  

 

 

 

𝑆 ∪ {𝐶 ˅ ∨ 𝐷} 

↙↘ 

𝑆 ∪ {𝐶}            S ∪ {𝐷} 
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We modify the program as shown as  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

By increasing the Q-depth (optional), we can prove 

that the formula is first order tableau. 

VAMPIRE is high-performance theorem prover for 

first-order logic , based on resolution and 

superposition. We are using VAMPIRE to obtain a 

refutation of first order formula. We write the axioms 

and conjecture in the TPTP-syntax, if we find that the 

formula is unsatisfiable, so we are getting a refutation. 

When running the same examples which applied in 

tableau, we have the same result (where the input 

formula is satisfiable or unsatisfiable).  

 

 

 

 

 

Example 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

This example contains first order problem (one 

axiom and conjecture) written in TPTP syntax. We 

need to prove a refutation. The first three declarations 

after command shown the example denote that q and p 

are a unary predicate symbol colored in the left color. 

The declarations fof(...) are TPTP declarations for 

introducing formulae. The VAMPIRE declarations 

left_formula, right_formula and end_formula are used 

to define L and R. The letters l and r are chosen to 

denote the name of this axioms. The user can choose 

any name. Names of input are ignored by VAMPIRE. 

The conjecture is keyword $false to denote that the 

formula 

~(?[X]:(p(X)&q(X))=>(?[X]:p(X)&?[X]:q(X)))) has a 

refutation. The expression 

~(?[X]:(p(X)&q(X))=>(?[X]:p(X)&?[X]:q(X)))) is to 

prove the refutation. We save a problem in a file and 

run VAMPIRE using the command (Vampire 

Filename). The output is in steps. Every formula is 

assigned a unique number. The proof consists of 

inferences. Each inference infers a formula, called the 

conclusion of this inference, from a set of formulas, 

called the premises of the inference. The output of the 

last example is shown as: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

test(X, Qdepth) :-reset, branch(Notated,[neg 

X]), notation(Notated, []), 

expand([Notated],Qdepth,Tree), 

if_then_else(closed(Tree),yes(Qdepth), 

no(Qdepth)). 

yes(Qdepth):-write('First-order tableau theorem 

at Q-depth'), write(Qdepth), write(.) ,nl. 

no(Qdepth):-write('Not First-order tableau 

theorem at Q-depth'), write(Qdepth), write(.), nl. 

?-test(some(x, p(x) and q(x)) imp (some(x , p(x)) 

and some(x, q(x))),1). 

Not First-order tableau theorem at Q-depth 1. 

true 

test(_ ,5). 

test(X, Qdepth) :-reset, branch(Notated,  [neg 

X]), notation(Notated, []), 

expand([Notated], Qdepth, Tree), 

if_then_else(closed(Tree), yes(Qdepth), 

no(Qdepth)), 

NewQdepth is Qdepth+1, test(X, NewQdepth). 

yes(Qdepth):-write('First-order tableau theorem 

at Q-depth '), write(Qdepth), write(.) ,nl. 

no(Qdepth):-write('Not First-order tableau 

theorem at Q-depth'), write(Qdepth), write(.), nl. 

?-test(some(x, p(x) and q(x)) imp (some(x, p(x)) 

and some(x, q(x))),1). 

Not First-order tableau theorem at Q-depth 1. 

First-order tableau theorem at Q-depth 2. 

First-order tableau theorem at Q-depth 3. 

First-order tableau theorem at Q-depth 4. 

true. 

 

 

 

 

 

 

 

 

 

 

 

vampire(option,show_interpolant,on).  

vampire(symbol, predicate, q, 1, left). 

vampire(symbol,predicate,p,1, left). 

vampire(left_formula) 

fof(l, 

axiom,~(?[X]:(p(X)&q(X))=>(?[X]:p(X)&?[X

]:q(X)))). 

vampire(end_formula). 

 vampire(right_formula).  

fof(r, conjecture, $false). 

 vampire(end_formula). 

 

vampire(option,show_interpolant,on).  

vampire(symbol, predicate, q, 1, left). 

vampire(symbol,predicate,p,1, left). 

vampire(left_formula) 

fof(l, 

axiom,~(?[X]:(p(X)&q(X))=>(?[X]:p(X)&?[X

]:q(X)))). 

vampire(end_formula). 

 vampire(right_formula).  

fof(r, conjecture, $false). 

 vampire(end_formula). 

 

vampire(option,show_interpolant,on).  

vampire(symbol, predicate, q, 1, left). 

vampire(symbol,predicate,p,1, left). 

vampire(left_formula) 

fof(l, 

axiom,~(?[X]:(p(X)&q(X))=>(?[X]:p(X)&?[X

]:q(X)))). 

vampire(end_formula). 

 vampire(right_formula).  

fof(r, conjecture, $false). 

 vampire(end_formula). 

 

vampire(option,show_interpolant,on).  

vampire(symbol, predicate, q, 1, left). 

vampire(symbol,predicate,p,1, left). 

vampire(left_formula) 

fof(l, 

axiom,~(?[X]:(p(X)&q(X))=>(?[X]:p(X)&?[X]

:q(X)))). 

vampire(end_formula). 

 vampire(right_formula).  

fof(r, conjecture, $false). 

 vampire(end_formula). 
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In VAMPIRE, we get a statistical report about 

the proof is shown as: 

 

Version: Vampire 3.0 (revision 2069) 

 Termination reason:  Refutation 

 Active clauses: 4 

 Passive clauses: 4  

 Generated clauses: 7  

Final active clauses: 3  

Input formulas: 2 Initial clauses: 3 

Binary resolution: 2 

Split clauses: 1  

Split components: 2  

SAT solver clauses: 4 

 SAT solver unit clauses: 2 

 SAT solver binary clauses: 1  

SAT solver learnt clauses: 1 

Sat splits: 1  

Sat splitting refutations: 2 

Memory used [KB]: 255  

Time elapsed: 0.182 s 

 
Conclusion 

For a long time, by applying the examples of 

tableau in VAMPIRE, we can save time and memory, 

and also have a statistical report about the proof. We 

can use the result of   

VAMPIRE to increase the Q-depth in tableau, where 

if we get that the formula is not first order formula 

(satisfiable) at specified Qdepth, we can increase the 

depth until we get a refutation (unsatisfiable). 
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Refutation found. Thanks to Tanya! 
16. $false (0:0) [sat splitting refutation 15,11,13,12,14] 

 14. $false {0} (1:0) [resolution 12,9] 

 9. p(sK0) (0:2) [cnf transformation 8] 

 8. (p(sK0) & q(sK0)) & (! [X1] : ~p(X1) | ! [X0] : ~q(X0)) 

[skolemisation 7]  

7. ? [X2] : (p(X2) & q(X2)) & (! [X1] : ~p(X1) | ! [X0] : 

~q(X0)) [rectify 6] 

 6. ? [X0] : (p(X0) & q(X0)) & (! [X2] : ~p(X2) | ! [X1] : 

~q(X1)) [ennf transformation 4] 

 4. ~(? [X0] : (p(X0) & q(X0)) => (? [X2] : p(X2) & ? [X1] 

: q(X1))) [rectify 1]  

1. ~(? [X0] : (p(X0) & q(X0)) => (? [X0] : p(X0) & ? [X0] 

: q(X0))) [input] 

 12. ~p(X1) {0} (0:2) [sat splitting component] 

 13. ~q(X0) {2} (0:2) [sat splitting component] 

 11. ~q(X0) | ~p(X1) (0:4) [cnf transformation 8]  

15. $false {2} (1:0) [resolution 13,10]  

10. q(sK0) (0:2) [cnf transformation 8]  

Interpolant: $false 
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