
[Mahomoud, 3(9): September, 2014] ISSN: 2277-9655
 Scientific Journal Impact Factor: 3.449

 (ISRA), Impact Factor: 2.114

http: // www.ijesrt.com (C)International Journal of Engineering Sciences & Research Technology
[528]

IJESRT
INTERNATIONAL JOURNAL OF ENGINEERING SCIENCES & RESEARCH

TECHNOLOGY

First Order Logic in Semantic Tableau and VAMPIRE

Rania Mahmoud*, Ismail Amr Ismail,Ahmed Fahim

*Faculty of Science,Suez University,Suez-Egypt

Faculty of Information Technology,October 6 University,Cairo-Egypt

Faculty of Science,Suez University,Suez-Egypt

rania_cs11@yahoo.com

 Abstracts
Semantic tableau is a proof system used to prove the validity of a formula using Prolog, it can also be used

to prove if a formula is a logic consequence of a set of formulas. Semantic tableau is used in both propositional and

predicate logic. Tableau is a disjunction normal form. VAMPIRE is a high-performance theorem prover for first-order

logic with or without equality. In this paper, a modified version of semantic tableau is presented, experimental results

proved the validity of modified tableau. Also, it is shown how Tableau proof system and VAMPIRE can be used in

predicate logic.

Keywords: Predicate Logic, Semantic Tableau, VAMPIRE..

Introduction
Since the days of Turing theorem has been so

important especially in the case of long proofs proving

which if done manually could be very much liable to

human errors, Therefore automatic proving has been a

very important replica. An automatic theorem prover

for first order logic(FOL) is a procedure or program

that can be used to show that some goal formula is

implied by some first order theory, usually represented

by a finite set of formulas. A semantic tableau is a tree

representing all the ways the conjunction of the

formulas at the root can be true. We expand the

formulas based on the structure of the compound

formulas. This expansion forms a tree. If all branches

in the tableau lead to a contradiction, then there is no

way the conjunction of the formulas at the root can be

true. A path of the tree represents the conjunction of

the formulas along the path[2].

VAMPIRE is a system for proving theorems in first

order logic with equality. VAMPIRE developed in a

resolution-based theorem prover. VAMPIRE is the

first theorem prover that can be used for proving and

generating program properties automatically.

Semantic tableau was invented by E.W. Beth and J.

Hintikka (1965).

The first version of VAMPIRE was implemented in

1993, it was then rewritten several times. The

implementation of the current version started in 2009.

It is written in C++ and comprises about 152,000

SLOC. It was mainly implemented by Andrei

Voronkov and Krystof Hoder. Many of the more

recent developments and ideas were contributed

byLaura Kovacs. Finally, recent work on SAT solving

and bound propagation is due to Ioan Dragan[3].

Problem formulation
First Order Predicate in Tableau

A semantic tableau is a proof system used to:

 1. Test a formula A for validity.

 2. Test whether B is a logical consequence of A1,...,

Ak.

 3. Test A1,..., Ak for satisfiability.

Definition 1:A path of a tableau is said to be closed if

it contains a conjugate pair of formulas, i.e. if some

formula A and ~ A appear in the same path. A path of

a tableau is said to be open if it is not closed. A tableau

is said to be closed if each of its paths is closed[8].

We will see how tableau can be used to prove the

validity of formula:

1. To test a formula A for validity, from a tableau

starting with ~A. If the tableau closes off then A

is logically valid.

2. To test whether B is a logical consequence of

A1,..., Ak, form a tableau starting with A1,..., Ak,

~B, If the tableau closes off then B is a logical

consequence of A1,..., Ak.

3. To test A1,..., Ak for satisfiability, form a tableau

starting with A1,..., Ak, If the tableau closes off

then A1,..., Ak is not satisfiable. If the tableau

does not close off then A1,..., Ak is satisfiable,

http://www.ijesrt.com/
rania_cs11@yahoo.com
mailto:subodhamb@rediffmail.com

[Mahomoud, 3(9): September, 2014] ISSN: 2277-9655
 Scientific Journal Impact Factor: 3.449

 (ISRA), Impact Factor: 2.114

http: // www.ijesrt.com (C)International Journal of Engineering Sciences & Research Technology
[529]

and from any open path we can read off an

assignment satisfying A1,..., Ak.

There are 7 rules used to construct the tableau

in the propositional logic as shown in the following

figure

Fig 1: Tableau Rules used in Propositional Logic

Tableau proof is used also in predicate logic by

adding rules to cope with the universal and existential

quantifiers i.e. (∨, ∃).

There are additional 6 rules used in predicate logic

are shown as:

Rule 1: (∀x) α(x)

 α(t),

for any ground term or constant term t, where t is a

term free from variables.

Rule 2: ~{(∀x) α(x) }

 ~α (c),

for any new constant c not occurring in α.

Rule 3: Consider A(x, t) to be any an atomic formula

with x as a variable and t an any ground term.

 ~ (∀x) A(x, t)

 ~A(f(t),t),

 where f is some function of t.

Rule 4:Consider A(x, t) to be any an atomic formula

with x as a variable and t an any ground term.

 (∃ x) A(x, t)

 A(g(t),t),

where g is some function of t.

Rule 5: (∃x)α(x)

 α(c), for any new constant c.

Rule 6: ~{(∃ x)α(x)}

 ~α(t), for any ground term t.

The following example shows how tableau proof

system is used in proving

Tableau root

~ [(∃x) (P(x) ∨ Q(x)) →((∃x) P(x) ∨ (∃x) Q(x))]

(1)

(∃x) (P(x) ∨ Q(x)) (2)

~ [(∃x) P(x) ∨ (∃x) Q(x)] (3)

~ (∃x)P(x) (4)

~ (∃x)Q(x) (5)

P(a) ∨ Q(a) , for some constant a (6)

~P(t1) , for any ground term t1 (7)

~Q(t2) , for any ground term t2

P(a) Q(a)

 closed{P(a), ~P(t1)} closed{Q(a), ~Q(t2)}

 In this example all the branches are closed.

Therefore, the original formula is valid, where {a, t1}

and {a, t2} are identical by applying the unification

algorithm

Substitution and Unification
 Suppose we have two terms t and u, each

containing variables. How do we decide whether there

are any substitutions that make t and u identical?. A

substitution θ is called a unifier of a finite set S of

literals if Sθ is a singleton set[9].

A unifier θ for S is called a most general unifier (mgu)

for S if for every unifier α of S there exists a

substitution σ such that α = θσ. We want to find a way

to construct an mgu for any set of literals.

If S is a set of literals, then the disagreement set

of S is constructed in the following way.

1. Find the longest common substring that

starts at the left end of each literal of S.

2. The disagreement set of S is the set of all

the terms that occur in the literals of S that

are immediately to the right of the longest

common substring.

Unification Algorithm (Robinson)

 Input: A finite set of atoms.

 Output: Either a most general unifier for S or

a statement that S is not unifiable

1. Set k = 0 and 𝜃0= ε, and go to Step 2.

2. Calculate S𝜃k. If it's a singleton set, then

stop (𝜃𝑘 is the mgu for S).

Otherwise, let 𝐷𝑘 be the disagreement set of S, and go

to Step 3.

 3. If 𝐷𝑘 contains a variable υ and a

http://www.ijesrt.com/

[Mahomoud, 3(9): September, 2014] ISSN: 2277-9655
 Scientific Journal Impact Factor: 3.449

 (ISRA), Impact Factor: 2.114

http: // www.ijesrt.com (C)International Journal of Engineering Sciences & Research Technology
[530]

 term t, such that υ doesn't occur in t, then calculate the

composition 𝜃𝑘+1 = 𝜃𝑘{υ/t}, set k:= k+1, and

go to Step 2. Otherwise, stop (S isn't unifiable).

A Tableau Implementation
In this section, we discuss an implementation of the

free variable first order tableau. We apply all Tableau

Expansion Rules before proving branch closure.

Finally, all Tableau Substitution Rule applications will

apply most general unifiers to close branches.

Correspondence between formulas and their types is

summarized in Table1. We use α for formulas of

conjunctive type, β for formulas of disjunctive type, 𝛾

for quantified formulas of universal, and δ for

quantified formulas of existential type. In the case of

𝛾 - and δ -formulas the variable x bound by the (top-

most) quantifier is made explicit by writing 𝛾(x) and

𝛾1(x) (resp δ(x) and δ1(x)); accordingly 𝛾1(t) denotes

the result of replacing all occurrences of x in 𝛾1 by t.

Associativity of∧ and∨ justifies conjunctive and

disjunctive formulas with an indefinite number of

arguments [4].
Table 1 Correspondence between formulas and their

types.

If δ occurs on a branch, we add δ(𝑓(x1, … , x𝑛)

to the branch end, where x must be a free variable that

doesn't also occur bound in the tableau; f must be a

new Skolem function symbol, and x1, … , x𝑛 all free

variables occurring on the branch. We take a Skolem

function symbol to be fun(n), where n is a number that

is increased by 1 at each δ rule application. We

introduce a predicate, funcount, whose purpose is to

save the current Skolem function number. Then each

time the δ rule is applied, the function newfuncount is

called upon to increase the funcount by 1.

The Q-depth is a pre-set bound, representing quantifier

depth. The 𝛾 rule is applied the maximum allowed

number of times, as specified by the value of Q-depth.

In this way a complete tableau expansion for a given

Q-depth can be constructed in a finite number of steps,

and we can then go on to the closure testing stage.

Proofs are finite objects so if a sentence X is provable;

it has a proof in which some finite number of 𝛾 rule

applications has been made. Consequently, if X is

valid, it will be provable at some Q-depth. Being

invalid is equivalent to being unprovable at every Q-

depth, so that we will change the Q-depth; by

increasing or decreasing it until get closure.

We want to ensure that if there are several 𝛾 rules on a

branch. We do not apply the Q-depth of 𝛾 rule

applications on a single formula so that we treat each

branch as a priority queue. When working with a

branch, we work from the top-down. We apply the rule

to the uppermost negation or α formula. If we have a

formula that is not a 𝛾 formula, we remove it from the

branch and add its components or an instance. On

other hand, if we have a𝛾 formula in our problem, we

remove it, add an appropriate instance to the branch

top, and add 𝛾 to the branch end. We work as long as

apply 𝛾 rule on all branches of problem.

First Order Predicate in VAMPIRE

VAMPIRE is an automatic theorem prover for first-

order logic. VAMPIRE implements symbol

elimination, which allows to automatically discover

first-order program properties, including quantified

ones. VAMPIRE is the first theorem prover that can be

used for proving and generating program properties

automatically. VAMPIRE is fully compliant with the

first-order part of the TPTP syntax[1]:a Prolog-like

𝛾

𝛾(𝑥)

(for an unbounded

variable x)

δ

δ(𝑓(x1, … , x𝑛)

(for f new Skolem and

x1, … , x𝑛 all the used

free variables)

α α1, ... ,αn

φ1∧ ... ∧φn φ1 , ... , φn

~ (φ1∨ ... ∨φ) ~φ1 , ... , ~φn

~~φ Φ

β β1 , … , βn

φ1∨ ... ∨φn φ1 , ... , φn

~ (φ1∧ ... ∧φn) ~φ1 , ... , ~φn

δ δ1

~(∀x)(φ(x)) ~φ(x)

(∃ x)(φ(x) φ(x)

𝛾 𝛾1

(∀x)(φ(x)) φ(x)

~(∃ x)(φ(x)) ~φ(x)

http://www.ijesrt.com/

[Mahomoud, 3(9): September, 2014] ISSN: 2277-9655
 Scientific Journal Impact Factor: 3.449

 (ISRA), Impact Factor: 2.114

http: // www.ijesrt.com (C)International Journal of Engineering Sciences & Research Technology
[531]

syntax allowing one to specify input axioms and

conjecture for theorem provers, used by nearly all first-

order theorem provers. It was the first ever first-order

theorem prover to implement the TPTP if-then-else

and let-in formula and term constructors useful for

program analysis[3].

In this section, we describe a simple way of

using VAMPIRE for proving a formula. Writing the

formula as a problem in the TPTP syntax and applying

VAMPIRE on this problem. VAMPIRE is completely

automatic.

Table 2 Correspondence between the first-order logic and

TPTP notations

First-Order Logic TPTP

⊥, ┬

$false, $true

¬F ~ F

F𝟏∧ ... ∧ F𝐧 F1&... &Fn

 F𝟏∨ ... ∨F𝐧 F1 |... | Fn

 F𝟏 → Fn

 F𝟏=>F𝐧

 F𝟏 ↔ F𝐧 F𝟏<=> F𝐧

(∀ x𝟏)...(∀x𝐧)F ![x𝟏,...,x𝐧]:F

(∃ x𝟏)...(∃x𝐧)F ?[x𝟏,...,x𝐧]:F

Refutation in VAMPIRE
VAMPIRE is applied to some axioms and

conjecture of first order predicate to obtain a

refutation. We can prove the refutation of a formula by

adding the negation of the formula and checking if the

resulting set of formulas is unsatisfiable. If it is, then

the resulting formula is a logical consequence of the

axioms.

Definition 2: An inference rule is an n-arty relation on

formulas, where n ≥ 0. The elements of such a relation

are called inferences and usually written as
A1, . . . , An

A

The formulae A1, . . . , An are called the premises, and

the formula A the conclusion, of this inference. An

inference system is a set of inference rules. An axiom

of an inference system is any conclusion of an

inference with 0 premises.

Each formula (or inference) in the proof is obtained

using one or more inference rules. They are shown in

brackets, together with parent numbers. Some

examples of inference rules in this proof are

superposition, inequality splitting and skolemisation.

There are several kinds of inference rules. Some

inferences, marked as input, introduce input formulae.

There are many inference rules related to

preprocessing input formulae, for example ennf

[equivalence negation normal form] transformation

and cnf [conjunction normal form] transformation.

The input formulas are finally converted to clauses,

after which VAMPIRE tries to check the

unsatisfiability of the resulting set of clauses using the

resolution and superposition inference system. The

superposition calculus rules are divided in to two parts

generating and simplifying ones.

Formulas and clauses having free variables are

considered implicitly universally quantified.

Normally, the conclusion of an inference is a logical

consequence of its premises. Inference rules used by

VAMPIRE guarantee soundness, which means that an

inference cannot change a satisfiable set of formulas

into an unsatisfiable one.

At the end of any run to VAMPIRE, there are statistics

about the proof, including the overall running time,

used memory, and the termination reason (for

example, refutation found). In addition, it contains

information about the number of various kinds of

clause and inferences. VAMPIRE is based on a

complete inference system, if the problem is

unsatisfiable, enough time and space are given to find

a refutation. When VAMPIRE cannot find a

refutation, there are many ways try to find solution,

increasing time limit and so on.

Preprocessing

Given a problem, VAMPIRE works as follows:

 Input the formula.

 Determine proof-search options to be used for

this formula.

 Preprocess the formula.

 Convert the formula into equivalence negation

normal form (ennf).

 Remove if-then-else and let-in connectives.

 Apply pure predicate elimination.

 Use a naming technique to replace some sub

formulas by their names.

 Skolemise the formula.

 Transform the formula into its conjunctive

normal form (cnf).

 Function definition elimination (optional).

 Apply inequality splitting (optional).

 Remove tautologies.

 Apply pure literal elimination (optional).

 Remove clausal definitions (optional).

http://www.ijesrt.com/

[Mahomoud, 3(9): September, 2014] ISSN: 2277-9655
 Scientific Journal Impact Factor: 3.449

 (ISRA), Impact Factor: 2.114

http: // www.ijesrt.com (C)International Journal of Engineering Sciences & Research Technology
[532]

 Report the result, maybe including a

refutation.

Superposition Inference System

The superposition inference system depends on

a simplification ordering and selection function. It

consists of the following rules [7]:

Resolution.
𝐴∨𝐶1¬𝐴′∨𝐶2

(𝐶1∨𝐶2)𝜃
 ,

where θ is a most general unifier of the atomic formula

A and A'.

Factoring.
 𝐴˅∨𝐴′˅∨𝐶

(𝐴˅∨𝐶)𝜃
 ,

where θ is a most general unifier of the atomic formula

A and A'.

Equality Resolution.
𝑠≠𝑡˅∨𝐶

𝐶𝜃
 ,

where θ is a most general unifier ofs and t.

Functionality of VAMPIRE

Features of VAMPIRE related to its functionality,

including the splitting rule, simplification orders,

simplification rules, clause and literal selection, and

reasoning with limited time.

Saturation Algorithm in VAMPIRE

To saturate a set of clauses S with respect to an

inference system, we need a saturation algorithm. At

every step of the saturation algorithm, we select an

inference, apply this inference to S, and add the

conclusion of the inferences to the set S. If the initial

set is unsatisfiable, then we will prove the refutation

of clauses[5].

Clause selection in VAMPIRE is dependent on two

factors: the age and the weight priorities of a clause,

where the age is used as numbering of clauses. Each

clause has a unique number in increasing order, older

clauses have smaller numbers. Each clause has a

weight equal to its size, which is the total number of

symbols in it. The clauses are selected from the age

and weight priority queues using an age-weight ratio,

a pair of non negative integers (a, w). If the age-weight

ratio is (a, w), then of each a + w clauses, a oldest and

w lightest clauses are selected. The age-weight ratio is

specified by the user using the command --

age_weight_ratio.

Splitting

VAMPIRE implements the splitting without

backtracking; the splitting rule is specified as follows:
𝑆∪ {𝐶˅∨ 𝐷}

𝑆∪ {𝐶˅∨ 𝑝,𝐷 ∨˅¬𝑝}

where S is a set of clauses, the clauses C and D have

no common variables, and p is a new propositional

symbol. This rule is used in splitting of the clause store

into two new stores, as shown in the β-rule in semantic

tableau[5]:

Colored Proofs and Interpolation

Colored proofs are used in a program when some

(predicate and/or function)symbols are declared to

have colors. In colored proofs every inference and

every term or atomic formula can use symbols of at

most one color. We call a symbol, term and clause

colored if it uses a color, otherwise it is called

transparent[6].

Let L and R be two closed formulae, have no free

variables. A formula I is called an interpolant of

formulae L and R if the following conditions are

satisfied:

(1) ⊢ L → I;

(2) ⊢ I → R;

(3) I uses symbols occurring in both L and R.

where the existence of an interpolant implies that ⊢ L

→ R; R is a logical consequence of L.

Simulated output result
The method of tableau works by starting with

the initial set of formulae and then adding to the

tableausimpler formulae until contradiction is shown

in the simple form of opposite literals. Since the

formula represented by a tableau is the disjunction of

the formulae represented by its branches, contradiction

is obtained when every branch contains a pair of

opposite literals.

Once a branch has contained a literal and its negation,

its corresponding formula is unsatisfiable. As a result,

this branch can be now "closed", as there is no need to

further expand it. If all branches of a tableau are

closed, the formula represented by the tableau is

unsatisfiable; therefore, the original set is unsatisfiable

as well. Obtaining a tableau where all branches are

closed is a way for proving the unsatisfiability of the

original set.

In Tableau system, we prove the validity of a formula

for a specific Q-depth. If a formula can't be first order

at a specific Q-depth, we increase it to get refutation.

The following example is compiled in SWI-

Prolog(w64pl-2013-11-06)

Example: Check the validity of the formula(∃ x)(p(x)

˄ q(x)) → (∃ x)p(x) ˄ (∃ x)q(x)

If we check at Q-depth 1, we find that the formula not

first order tableau at 1.

𝑆 ∪ {𝐶 ˅ ∨ 𝐷}

↙↘

𝑆 ∪ {𝐶} S ∪ {𝐷}

http://www.ijesrt.com/

[Mahomoud, 3(9): September, 2014] ISSN: 2277-9655
 Scientific Journal Impact Factor: 3.449

 (ISRA), Impact Factor: 2.114

http: // www.ijesrt.com (C)International Journal of Engineering Sciences & Research Technology
[533]

We modify the program as shown as

By increasing the Q-depth (optional), we can prove

that the formula is first order tableau.

VAMPIRE is high-performance theorem prover for

first-order logic , based on resolution and

superposition. We are using VAMPIRE to obtain a

refutation of first order formula. We write the axioms

and conjecture in the TPTP-syntax, if we find that the

formula is unsatisfiable, so we are getting a refutation.

When running the same examples which applied in

tableau, we have the same result (where the input

formula is satisfiable or unsatisfiable).

Example

This example contains first order problem (one

axiom and conjecture) written in TPTP syntax. We

need to prove a refutation. The first three declarations

after command shown the example denote that q and p

are a unary predicate symbol colored in the left color.

The declarations fof(...) are TPTP declarations for

introducing formulae. The VAMPIRE declarations

left_formula, right_formula and end_formula are used

to define L and R. The letters l and r are chosen to

denote the name of this axioms. The user can choose

any name. Names of input are ignored by VAMPIRE.

The conjecture is keyword $false to denote that the

formula

~(?[X]:(p(X)&q(X))=>(?[X]:p(X)&?[X]:q(X)))) has a

refutation. The expression

~(?[X]:(p(X)&q(X))=>(?[X]:p(X)&?[X]:q(X)))) is to

prove the refutation. We save a problem in a file and

run VAMPIRE using the command (Vampire

Filename). The output is in steps. Every formula is

assigned a unique number. The proof consists of

inferences. Each inference infers a formula, called the

conclusion of this inference, from a set of formulas,

called the premises of the inference. The output of the

last example is shown as:

test(X, Qdepth) :-reset, branch(Notated,[neg

X]), notation(Notated, []),

expand([Notated],Qdepth,Tree),

if_then_else(closed(Tree),yes(Qdepth),

no(Qdepth)).

yes(Qdepth):-write('First-order tableau theorem

at Q-depth'), write(Qdepth), write(.) ,nl.

no(Qdepth):-write('Not First-order tableau

theorem at Q-depth'), write(Qdepth), write(.), nl.

?-test(some(x, p(x) and q(x)) imp (some(x , p(x))

and some(x, q(x))),1).

Not First-order tableau theorem at Q-depth 1.

true

test(_ ,5).

test(X, Qdepth) :-reset, branch(Notated, [neg

X]), notation(Notated, []),

expand([Notated], Qdepth, Tree),

if_then_else(closed(Tree), yes(Qdepth),

no(Qdepth)),

NewQdepth is Qdepth+1, test(X, NewQdepth).

yes(Qdepth):-write('First-order tableau theorem

at Q-depth '), write(Qdepth), write(.) ,nl.

no(Qdepth):-write('Not First-order tableau

theorem at Q-depth'), write(Qdepth), write(.), nl.

?-test(some(x, p(x) and q(x)) imp (some(x, p(x))

and some(x, q(x))),1).

Not First-order tableau theorem at Q-depth 1.

First-order tableau theorem at Q-depth 2.

First-order tableau theorem at Q-depth 3.

First-order tableau theorem at Q-depth 4.

true.

vampire(option,show_interpolant,on).

vampire(symbol, predicate, q, 1, left).

vampire(symbol,predicate,p,1, left).

vampire(left_formula)

fof(l,

axiom,~(?[X]:(p(X)&q(X))=>(?[X]:p(X)&?[X

]:q(X)))).

vampire(end_formula).

 vampire(right_formula).

fof(r, conjecture, $false).

 vampire(end_formula).

vampire(option,show_interpolant,on).

vampire(symbol, predicate, q, 1, left).

vampire(symbol,predicate,p,1, left).

vampire(left_formula)

fof(l,

axiom,~(?[X]:(p(X)&q(X))=>(?[X]:p(X)&?[X

]:q(X)))).

vampire(end_formula).

 vampire(right_formula).

fof(r, conjecture, $false).

 vampire(end_formula).

vampire(option,show_interpolant,on).

vampire(symbol, predicate, q, 1, left).

vampire(symbol,predicate,p,1, left).

vampire(left_formula)

fof(l,

axiom,~(?[X]:(p(X)&q(X))=>(?[X]:p(X)&?[X

]:q(X)))).

vampire(end_formula).

 vampire(right_formula).

fof(r, conjecture, $false).

 vampire(end_formula).

vampire(option,show_interpolant,on).

vampire(symbol, predicate, q, 1, left).

vampire(symbol,predicate,p,1, left).

vampire(left_formula)

fof(l,

axiom,~(?[X]:(p(X)&q(X))=>(?[X]:p(X)&?[X]

:q(X)))).

vampire(end_formula).

 vampire(right_formula).

fof(r, conjecture, $false).

 vampire(end_formula).

http://www.ijesrt.com/

[Mahomoud, 3(9): September, 2014] ISSN: 2277-9655
 Scientific Journal Impact Factor: 3.449

 (ISRA), Impact Factor: 2.114

http: // www.ijesrt.com (C)International Journal of Engineering Sciences & Research Technology
[534]

In VAMPIRE, we get a statistical report about

the proof is shown as:

Version: Vampire 3.0 (revision 2069)

 Termination reason: Refutation

 Active clauses: 4

 Passive clauses: 4

 Generated clauses: 7

Final active clauses: 3

Input formulas: 2 Initial clauses: 3

Binary resolution: 2

Split clauses: 1

Split components: 2

SAT solver clauses: 4

 SAT solver unit clauses: 2

 SAT solver binary clauses: 1

SAT solver learnt clauses: 1

Sat splits: 1

Sat splitting refutations: 2

Memory used [KB]: 255

Time elapsed: 0.182 s

Conclusion

For a long time, by applying the examples of

tableau in VAMPIRE, we can save time and memory,

and also have a statistical report about the proof. We

can use the result of

VAMPIRE to increase the Q-depth in tableau, where

if we get that the formula is not first order formula

(satisfiable) at specified Qdepth, we can increase the

depth until we get a refutation (unsatisfiable).

References
1. G. Sutcliffe. The TPTP Problem Library -

http://www.cs.miami.edu/˜tptp/, 2013.

2. M. C. Fitting. First-Order Modal Tableau,

Journal of Automated Reasoning, vol 4, pp

191-213.

3. L. Kovacs, A. Voronkov. Vampire Web Page

-http:// vprover.org2013

4. M. C.Fitting.First-Order Logic and

Automated Theorem Proving,Springer-

Verlag (1990).

5. A. Riazanov and A.Voronkov. The Design

and Implementation of Vampire. AI

Communications, 15(2-3):91–110, 2002.

6. L. Kovacs, A. Voronkov. Interpolation and

Symbol Elimination. In Proc. of CADE

2009.pp 199–213. Springer, Heidelberg

(2009)

7. L. FRIBOURG, A SUPERPOSITION

ORIENTED THEOREM PROVER(1984).

8. S. Kaushik.Logic and Prolog Programming,

New Delhi(2002)

9. James L.Hein. Theory of Computation, 1996.

Refutation found. Thanks to Tanya!
16. $false (0:0) [sat splitting refutation 15,11,13,12,14]

 14. $false {0} (1:0) [resolution 12,9]

 9. p(sK0) (0:2) [cnf transformation 8]

 8. (p(sK0) & q(sK0)) & (! [X1] : ~p(X1) | ! [X0] : ~q(X0))

[skolemisation 7]

7. ? [X2] : (p(X2) & q(X2)) & (! [X1] : ~p(X1) | ! [X0] :

~q(X0)) [rectify 6]

 6. ? [X0] : (p(X0) & q(X0)) & (! [X2] : ~p(X2) | ! [X1] :

~q(X1)) [ennf transformation 4]

 4. ~(? [X0] : (p(X0) & q(X0)) => (? [X2] : p(X2) & ? [X1]

: q(X1))) [rectify 1]

1. ~(? [X0] : (p(X0) & q(X0)) => (? [X0] : p(X0) & ? [X0]

: q(X0))) [input]

 12. ~p(X1) {0} (0:2) [sat splitting component]

 13. ~q(X0) {2} (0:2) [sat splitting component]

 11. ~q(X0) | ~p(X1) (0:4) [cnf transformation 8]

15. $false {2} (1:0) [resolution 13,10]

10. q(sK0) (0:2) [cnf transformation 8]

Interpolant: $false

http://www.ijesrt.com/

